Distributions ================ Sample from probability distributions not yet included in `torch.distributions`. .. code-block:: python from ml4gw.distributions import PowerLaw, Cosine, UniformComovingVolume import matplotlib.pyplot as plt # Initialize distributions power_law = PowerLaw( minimum=4, maximum=100, index=-3, ) cosine = Cosine() ucv = UniformComovingVolume( minimum=0, maximum=2, distance_type="redshift", ) # Sample from distributions samples_power_law = power_law.sample((10000,)) samples_cosine = cosine.sample((10000,)) samples_ucv = ucv.sample((10000,)) # Plot samples plt.figure(figsize=(12, 4)) plt.subplot(1, 3, 1) plt.hist(samples_power_law, bins=50) plt.title("PowerLaw") plt.subplot(1, 3, 2) plt.hist(samples_cosine, bins=50) plt.title("Cosine") plt.subplot(1, 3, 3) plt.hist(samples_ucv, bins=50) plt.title("UniformComovingVolume") plt.tight_layout() plt.show() .. image:: ../images/distribution_samples.png :alt: Histograms of samples from the distributions :width: 600px :align: center